Marathi Extractive Text Summarization using Latent Semantic Analysis and Fuzzy Algorithms

Virat V Giri*, Dr. M.M. Math2, Dr. U.P. Kulkarni3
1 Principal, Sanjay Ghodawat Polytechnic, Kolhapur, India
2 Professor, Dept of Comp Science and Engg, KLS, Gogte Institute of Technology, Belgaum, India
3 Professor, Dept. of Comp Science and Engg, SDM, College of Engineering and Technology, Dharwad, India
*Corresponding Author Mail: virat.giri@gmail.com

Abstract
Extractive text summarization involves the retention of only the most important sentences in a document. In the past, multiple approaches involving both statistical and machine learning-based methods have been used for this task. The crucial step in extractive text summarization is getting the right ranking order of sentences in the document in terms of their importance. Singular value decomposition or SVD algorithm based on latent semantic analysis focuses on recognizing the sections in the document which are related in terms of their semantic nature. Fuzzy algorithms involve reasoning of the priority order of the sentences using fuzzy logic unlike the use of discrete values. While significant work has been done for extractive text summarization in English and other foreign languages, there is ample scope for improving the performance of systems when dealing with Marathi text. In this paper, SVD and fuzzy algorithms are proposed for performing extractive text summarization on Marathi documents. Work is done upon the modeling principle, data flow, and parameters of these algorithms such that they are best suited for the task. An analysis of the characteristics of both these techniques is conducted to compare their benefits and shortcomings. The performance of both the algorithms is evaluated on a dataset using standard performance metrics including the ROUGE metric. An unbiased comparison of both these techniques is carried out to inform the applicability of them, especially when working with Marathi or in general, non-English text.

Keywords
Extractive Text Summarization, Singular Value Decomposition, Fuzzy Logic, Marathi Text.

INTRODUCTION
Natural language processing involves processing and modeling of natural language data to improve understanding of computers while ensuring that the semantic and syntactic structure of the data is retained. Text summarization is an important application of natural language processing which focuses on automatically deriving the summary of entered documents. There are two possible types of text summarization: abstractive text summarization and extractive text summarization.

Extractive text summarization is a summarization type where there is no addition of new content or modification of existing content, but rather only the most important phrases and sentences from the document are retained as the summary of document [1], [2]. It is akin to a highlighter used to highlight only the most important sections of a document to the viewer. Such an algorithm would require an accurate ranking of the sentences present in the document based on their relevance to the summary. Based on a decided threshold, the top N ranked sentences would then be predicted as the summary of the document. Previous approaches in this domain have considered the use of statistical features such as word count, and term frequencies for ranking the sentences [3]. Traditionally, extractive text summarization algorithms have been demonstrated and conceptualized while taking into consideration the English language [4]. Recent years have seen a rise in the contributions from the research community for non-English languages, including many Indian languages [2]. Marathi is a language spoken in the state of Maharashtra and nearby regions in India and is derived from the Devanagari script [2]. The work on extractive text summarization in the Marathi language has been relatively paltry [5][6][7].

In this paper, two different approaches are proposed for performing extractive text summarization on Marathi text documents. The first approach focuses upon using latent semantic analysis (LSA) that deploys a semantic identification and correlation of sentences between a document [8]. This is achieved using the singular value decomposition (SVD) technique. The second approach makes use of fuzzy logic to solve this task. The fuzzy algorithm focuses on certain text characteristics and rules [9] using which sentence scores are assigned.

The contributions made through this paper are enlisted as follows:
1) Implementation of a latent semantic analysis based algorithm for extractive text summarization on Marathi documents
2) Implementation of fuzzy logic to derive rules useful for sentence ranking for extractive text summarization of Marathi documents.
3) Analysis and comparison of the aforementioned two approaches to better guide further work in this domain.

The rest of the content is structured as follows: previous work in this domain is discussed in Section 2, the two proposed approaches are described in detail in Section 3, the dataset description is detailed in Section 4, the results and
analysis of the two approaches based on the results are carried out in Section 5 and the conclusion and future scope are mentioned in Section 6.

BACKGROUND AND RELATED WORK

Extractive text summarization has been the preliminary text summarization demonstrating the priority ranking capability of the data modeling algorithm. Previous work in this domain has focused on the use of statistical features in the early days, and recently has seen more focus on graph-based and deep learning-based methods.

The initial method for extractive text summarization made use of term frequency and inverse document frequency for feature selection [3]. Documents, however, could also include various themes that are addressed, and clustering these methods together was also used as an approach for priority ranking [10]. Kumar et al. [11] made use of a knowledge induced graph for performing single-document summarization. In the last decade, machine learning has also been used to tackle this task across multiple domains as well as multiple languages [12], [13]. Query-based text summarization has also been tried where the ranking is based on the overlapping between the query phase and the document terms [14]. Recent years have also seen attempts to perform extractive text summarization using deep learning.

Recently, there have been attempts to perform extractive text summarization in Marathi. Bhosale et al. [7] used a naive frequency count approach for this task. Rathod made use of the page-rank and text-rank algorithms, however, their evaluation of these approaches was very restricted [15]. Sarwadnya and Sonawane went a step further in terms of the use of preprocessing methods and reliance on the text-rank algorithm [5]. Chaudhari et al. [6] presented the use of deep learning to create the summarizer.

These approaches have either not been evaluated on a standard-sized dataset, or have made use of traditional approaches only. While, singular value decomposition and fuzzy logic have been explored in the English language [1], [16], there has been no significant contribution by the community for using these on Marathi documents. In this paper, an attempt is made to try to incorporate these approaches in a novel way to boost performance when working with Marathi documents.

PROPOSED METHODOLOGIES

Two different methods are proposed and analyzed in this paper- the first one is the use of singular value decomposition (SVD) strategy as a part of the latent semantic analysis (LSA) approach, while the second is the use of fuzzy logic and rules for deciding the ranking mechanism. Figure 1 shows the block diagram of the extractive text summarization architecture. Note that two different solutions are presented for the summarizer algorithm phase.

Preprocessing

Preprocessing steps of the input documents in both the approaches remain the same. The document is first tokenized into separate tokens. This is followed by the removal of stop words. Stop words are the words that do not add to the meaning of the sentence and are used only to ensure the grammatical consistency of the sentence. These words do not add value in terms of realizing the ranking order of the sentences as they have a uniform probability of occurring in both important and unimportant sentences. Marathi language is characterized by the addition of suffixes to verbs to indicate the gender or the tense in which the sentence is being spoken. These suffixes also do not add any value to the semantic meaning of the sentence. They are removed to bring about faster processing and modeling and also reduce the number of distinct tokens modeled by the algorithm, thereby ensuring no ambiguous interpretations of similar meaning words. The preprocessed text is now more model-friendly and is passed as input to the summarizer algorithm.

Summarizer algorithms

Two different algorithms are presented in this paper for extractive text summarization. These are as follows:
1) Singular Value Decomposition (SVD): Computing the latent semantic structure of the document to obtain context similarity between the sentences and thereby mapping the vector space.
2) Fuzzy logic: Calculating values of some handcrafted statistical features and defining rules based on these features that are then passed as inputs to the fuzzy algorithm.

The inner working of both the algorithms is discussed in detail in the further subsections:

1) Singular Value Decomposition: Singular Value Decomposition or SVD is a technique under latent semantic analysis that tries to correlate and find the relation between the sentences present in a document and the words present in that sentence. The approach works in two distinct phases:

In the first phase, the input matrix D is created based on the term frequency of the words present in the document [17]. For m distinct words and n sentences in the document, D would be a $mn \times n$ dimension matrix. As every word does not occur in each of the sentences, A tends to be a sparse matrix in nature. Further, every sentence row in this matrix is normalized to a range between 0 and 1 using the following equation:

$$sentence_row = \frac{sentence_row}{\max(sentence_matrix.value())}$$ \hspace{1cm} (1)

Such a normalized input matrix can now be passed as an input to the SVD approach, which can be represented mathematically as follows:

$$D = U\Sigma V^T$$ \hspace{1cm} (2)

Where, D: Normalized input representation matrix U: $mn \times n$ matrix representing left singular vectors in the form of words x concept

Σ: $mn \times mn$ diagonal matrix indicating the singular eigenvalues, descending across the diagonal V: $n \times n$ matrix indicating the right singular vectors in the form of sentence x concept

Algorithm 1 indicates the procedure to derive the SVD values for subsequent ranking of the sentences in the document.

Algorithm 1 Algorithm for computing SVD

Input: Normalized input representation matrix D

Output: Values of U, V, and Σ

1: Prod_D = DD^T
2: $x1 = \text{Eigen_values}(\text{Prod_D})$
3: Inv_D = $D^T D$
4: $x2 = \text{Eigen_values}(\text{Inv_D})$
5: Val = $\sqrt{x2} \cap x2$
6: Assign values to U, V, and Σ
7: return U, V, Σ

As a modification to the existing SVD approach, three other factors are also considered. Apart from the sentence similarity weight, the sentence length, sentence position, and the sentence value are also included to decide the final ranking for the summarization. Each of these factors is considered and evaluated as follows:

- Sentence length: If the sentence length is less than the minimum permissible length, or greater than the maximum permissible length, then set it to zero.
- Sentence value: The normalized input representation discussed earlier
- Sentence position: If the sentence is the first or the last one in the document, then consider it to be important and set value as 1. Otherwise, derive the value as follows:

$$\text{Sentence pos} = \cos\left(\frac{\text{Pos}}{(1 - 2 \times \text{TRSH}) \times \text{len(sentences)}} \times 300\right)$$ \hspace{1cm} (4)

Where, TRSH is a hyperparameter decided by the user. The value is set to 0.01 in the presented setup.
- Sentence weight similarity: Calculated using the number of overlapping words present between two sentences.
- Sentence length: $\cos\left(\frac{\text{Length}}{\text{max_length} - \text{min_length}}\right)$

The final ranking for the sentence is derived by considering the sum of the absolute values of each of these factors. Based on the summary factor given by the user, the ranked sentences are sorted in descending order and the filtered sentences are output as the summary of the document.

2) Fuzzy Logic: The proposed fuzzy logic is calculated using a feature matrix. The feature matrix is derived based upon certain statistical features present in the document. Each of these features is as follows:

- Position factor of the sentence: The position factor of the sentence is calculated by normalizing its order in the document with respect to the total number of sentences.

$$\text{Pos factor} = \frac{\text{Total_sentences} - \text{current_pos}}{\text{Total_sentences}}$$ \hspace{1cm} (5)

- Bigram token length: Bigram is the tokenization of words done, but by considering two words at a time. The number of such bigram tokens present in a sentence is considered.
- Trigram token length: Trigrams are similar to bigram, but they consider three words together at a time. Trigram token length refers to the number of such trigram tokens present in the sentence.
- TF-ISF vector: It considers the term frequency as well as sentence frequency and is calculated as follows:

$$\text{tf_isf} = \frac{\text{term_freq}}{\text{sent_freq} \times \text{vocab_pos}}$$ \hspace{1cm} (6)

- Cosine similarity: Calculate the cosine similarity of the sentence with respect to the centroid of the document.

Mathematically, this can be represented as follows:
\[\text{Cos}_\text{similarity}(S, Z) = \frac{S \cdot Z}{||S||^2 ||Z||^2} \]

Where, \(Z \) is the centroid of the document and \(S \) is the sentence in consideration.

- **Thematic number:** It takes into consideration the factor of the number of keywords present in a sentence with respect to the total keywords present in the document [9].

\[\text{Thematic}_\text{number}(S) = \frac{\text{keywords in } S}{\text{total keywords}} \]

- **Sentence length factor:** It is calculated by taking the ratio of the length of the sentence to the length of the longest sentence present in the document [18].

- **Numeric tokens:** The number of numeric tokens present in the sentence in consideration with respect to its length.

- **Pnoun score:** The ratio of the number of proper nouns present in the sentence to the total words present in it. More important sentences generally tend to contain more information which would also be proportional to the number of proper nouns present in the sentence.

For each of these fuzzy variable factors, three values (poor, average, good) are used to auto-populate them. The fuzzy logic requires a triangular membership function generator that accepts an independent variable and a three-element vector used to control the shape of the function [19]. Based on the previously mentioned nine factors, a consequent factor \(\text{sent} \) is determined that is termed as bad, average, and good for vector values of \([0,0,50] \), \([0,50,100] \), and \([50,100,100] \) respectively. Using all of this information, five rules are set to compute the fuzzy logic prediction values. The rules are as follows:

1. \(\text{sent[’good’]} = \text{Position factor[’good’]} \& \text{Sentence length[’good’]} \& \text{Pnoun score[’good’]} \& \text{Numeric tokens[’good’]} \)
2. \(\text{sent[’bad’]} = \text{Position factor[’poor’]} \& \text{Sentence length[’poor’]} \& \text{Numeric tokens[’poor’]} \)
3. \(\text{sent[’bad’]} = \text{Pnoun score[’poor’]} \& \text{Thematic number[’average’]} \)
4. \(\text{sent[’good’]} = \text{Cosine similarity[’good’]} \)
5. \(\text{sent[’avg’]} = \text{Bigram token[’good’]} \& \text{Trigram token[’good’]} \& \text{Numeric tokens[’average’]} \& \text{TF-ISF[’average’]} \)

For an instance of data, the values of the aforementioned nine factors are calculated per sentence and passed as input for the fuzzy logic to compute. If the output of the consequent factor is greater than 50, the sentence is included in the summary of the document.

Using these two methods, summarization of a standard size document dataset is carried out and the obtained results are discussed in the next section.

IV. DATASET DESCRIPTION

The performance of the two proposed approaches is evaluated on a custom created dataset consisting of Marathi news articles ranging on a diverse set of issues including politics, economics, and social affairs. The dataset consists of 100 documents coupled with their manual summaries used later for evaluation purposes. A sample instance from a document in the dataset is shown in Table I.

<table>
<thead>
<tr>
<th>TABLE I: Sample document text</th>
</tr>
</thead>
<tbody>
<tr>
<td>As both the methods are instance-based and do not involve any trainable parameters, the entire dataset consisting of all the 100 documents is used for evaluation purposes. The algorithm is predefined and hence segregation of data is not required with only one pipeline required for the entire task.</td>
</tr>
</tbody>
</table>

V. RESULT AND ANALYSIS

Extractive text summarization focuses on retention of the most important sections of the document. As a result, evaluation of such summarizers focuses on the amount of overlap between the human summary and the machine generated summary. To define this measure of overlap in a standard format, the ROUGE metric is used [20].

Given a human generated summary \(H \) and a machine generated summary \(M \), the precision, recall, and the F1 score is defined as follows:

\[\text{ROUGE}1 \text{ Precision} = \frac{H \cap M}{M} \]
\[\text{ROUGE}1 \text{ Recall} = \frac{H \cap M}{H} \]
\[\text{ROUGE}1 \text{ F1} = \frac{2 * \text{R1.Precision} * \text{R1.Recall}}{\text{R1.Precision} + \text{R1.Recall}} \]

Where ROUGE−1 refers to the overlap when considering unigrams i.e., one token at a time. In a similar manner, ROUGE-2 related metrics can be defined as follows:

\[\text{ROUGE}2 \text{ Precision} = \frac{\text{bigrams in } H \cap \text{bigrams in } M}{\text{bigrams in } M} \]
\[\text{ROUGE}2 \text{ Recall} = \frac{\text{bigrams in } H \cap \text{bigrams in } M}{\text{bigrams in } H} \]

The ROUGE2 F1 score is the harmonic mean of precision and recall. The ROUGE-L metric is defined similarly and refers to the longest matching subsequence amongst the two summaries [20]. Firstly, the performance of the approaches is evaluated on single-document summarization. Based on the mentioned performance metrics, the results are produced and tabulated in Table II.
TABLE II: Results obtained on both the approaches for single document summarization

<table>
<thead>
<tr>
<th>Metric</th>
<th>SVD</th>
<th>Fuzzy Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUGE1:Precision</td>
<td>0.632</td>
<td>0.641</td>
</tr>
<tr>
<td>ROUGE1:Recall</td>
<td>0.623</td>
<td>0.625</td>
</tr>
<tr>
<td>ROUGE2:F1</td>
<td>0.612</td>
<td>0.623</td>
</tr>
<tr>
<td>ROUGE2:Precision</td>
<td>0.531</td>
<td>0.561</td>
</tr>
<tr>
<td>ROUGE2:Recall</td>
<td>0.519</td>
<td>0.546</td>
</tr>
<tr>
<td>ROUGEL:Precision</td>
<td>0.665</td>
<td>0.659</td>
</tr>
<tr>
<td>ROUGEL:Recall</td>
<td>0.614</td>
<td>0.636</td>
</tr>
<tr>
<td>ROUGEL:F1</td>
<td>0.626</td>
<td>0.64</td>
</tr>
</tbody>
</table>

It can be seen that the Fuzzy logic turns out to be a better approach as compared to the SVD method with better results on almost all of the performance metrics. Next, multi-document summarization is considered. In this case, the overlaps of tokens in the human summary and machine-generated summary is considered across multiple documents. Evaluation is done for precision, recall, and the F1-score. The results obtained are shown in Table III.

TABLE III: Results obtained on both the approaches for multi-document summarization

<table>
<thead>
<tr>
<th>Metric</th>
<th>SVD</th>
<th>Fuzzy Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.705</td>
<td>0.625</td>
</tr>
<tr>
<td>Recall</td>
<td>0.693</td>
<td>0.655</td>
</tr>
<tr>
<td>F1</td>
<td>0.682</td>
<td>0.63</td>
</tr>
</tbody>
</table>

It can be seen that while SVD was lagging in case of single document summarization, it outperforms Fuzzy logic by a comfortable margin when it comes to multidocument summarization. Further, as a part of ablation studies, the F1 scores are compared with a recently used method of position-based textrank [21].

While position-based rank seems to be the better performer for single document summarization, SVD turns out to be the better choice when working with multidocument summarization on Marathi documents. The results obtained for both the approaches on single-document and multi-document summarization are visualized in Fig. 2 and 3. To analyze the findings, the advantages and limitations of both the proposed approaches in the case of Marathi language are noted in Table V.

TABLE V: Analysis of the two presented approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Fuzzy logic</th>
<th>SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Can model nonlinear functions of arbitrary complexity [19]</td>
<td>Performs better on multi-document summarization</td>
</tr>
<tr>
<td></td>
<td>Flexible and easy to implement - Based on natural language</td>
<td>Acts as an initial step to advanced dimensionality reduction methods like PCA [8]</td>
</tr>
<tr>
<td></td>
<td>Accommodates faulty data</td>
<td>Performs satisfactory approximation of data</td>
</tr>
<tr>
<td>Shortcomings</td>
<td>Does not consider the semantic analysis of the words</td>
<td>Might underperform on non-linear data - Fails to recognize the context and the meaning of polysemic words in the particular instance</td>
</tr>
<tr>
<td></td>
<td>Does not consider the correlation amongst sentences</td>
<td>Semantic analysis is not performed</td>
</tr>
<tr>
<td></td>
<td>The number of rules keep on increasing with the number of input features</td>
<td></td>
</tr>
</tbody>
</table>

VI. CONCLUSION

In this paper, two novel approaches have been proposed for the task of extractive text summarization on Marathi documents. The first approach focused on singular value decomposition as a dimensionality reduction and feature selection technique. It took into consideration the sentence position and sentence length factors along with the calculation of eigenvectors. The second approach made use of fuzzy logic to derive rules used for priority ranking of sentences based on certain statistical features in the document. Both the proposed approaches have certain advantages and shortcomings. The evaluation of the approaches was done on a standard-sized dataset and a fuzzy logic-based approach was found to be better when working on single document classification. On the other
hand, SVD was seen to be the better method for multi
document summarization. There is a certain accuracy
complexity tradeoff amongst the two approaches. This has
been demonstrated by the evaluation of multiple performance
metrics. As a part of ablation studies, the results were
compared with another baseline method, and due analysis
was carried out. Future scope in this domain includes
consideration of semantic analysis, word embeddings, and
extension of the task to include abstractive text
summarization. Further, code-mixed text and low resource
languages can be explored for this task. The proposed
approaches have shown promising signs for text
summarization task in Marathi language and could be
extended further to other natural language understanding
tasks.

REFERENCES

extractive techniques,” Journal of emerging technologies in
text summarization system for different regional language in
india,” Bonfiring International Journal of Software
Engineering and Soft Computing, vol. 6, no. Special Issue
Special Issue on Advances in Computer Science and
Engineering and Workshop on Big Data Analytics Editors: Dr.
SB Kulkarni, Dr. UP Kulkarni, Dr. SM Joshi and JV Vadavi,
[3] J. Kaur and V. Gupta, “Effective approaches for extraction of
keywords,” International Journal of Computer Science Issues
(IJCSI), vol. 7, no. 6, p. 144, 2010.
2004.
summarizer using graph based model,” in 2018 Fourth
International Conference on Computing Communication
Control and Automation (ICCCBA), pp. 1–6, IEEE, 2018.
summarization using neural networks,” International Journal
for Advance Research and Development, vol. 4, no. 11, pp. 1–
3, 2019.
“Automatic text summarization based on frequency count for
marathi e-newspaper,” 2018.
summarization within the latent semantic analysis framework:
comparative study,” International Journal of Computer
for improving performance of extractive automatic text
summarization,” in 2016 International Conference on
Advances in Computing, Communications and Informatics
clustering technique,” International Journal of Engineering
induced graph-theoretical model for extract and abstract single
document summarization,” in International Conference on
Intelligent Text Processing and Computational Linguistics,
learning for medical document summarization,” International
learning methods to summarize persian texts,” Indian J. Sci.
“Query based arabic text summarization 1,” 2013.
news articles,” 2018.
logic,” International Journal of Innovative Research in
Advanced Engineering (IJIRAE), vol. 1, no. 3, pp. 42–45,
2014.
value decomposition,” in International Conference on
Advances in Information Systems, pp. 245–254, Springer,
2004.
features fusion for text summarization using fuzzy logic,” in
2009 Ninth International Conference on Hybrid Intelligent
[19] F. Kyoomarsi, H. Khoosavi, E. Eslami, P. K. Dehkordy, and
A. Tajoddin, “Optimizing text summarization based on fuzzy
logic,” in Seventh IEEE/ACIS International Conference on
Computer and Information Science (ics 2008), pp. 347–352,
IEEE, 2008.
text,” in Proceedings of the 2004 conference on empirical