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Abstract 

Ischemic stroke is now one of the vital factors for disability and mortality that globally affects millions of individuals each year in 
accordance with the World Health Organization (WHO) contrast to hemorrhagic stroke. Treatment for an ischemic stroke as soon as 
possible can assist to limit prolonged damage and even decreases the risk of mortality. The diagnosis is based on a neurologist's visual 
observation, which may differ from one to another. On the other hand, Manual segmentation is a tedious and instinctive procedure that has 
a conspicuous impact on Acute ischemic stroke encountered patient’s prognosis. Numerous automated computer Aided Diagnosis (CAD) 
systems dependent on many statistical learning algorithms of machine learning (ML) and multi-neural network architecture of deep learning 
(DL) were considered to reduce the complexity of prediction and lesion segmentation in ischemic stroke and also lower the time required for 

the manual procedure. This paper contemplates the Imaging modalities, Pre-processing techniques, and segmentation algorithms of 
ischemic stroke, as well as their performance based on comparing different evaluation parameters and their disadvantages. It highlights the 
current needs, preferred modality, and possible research ideas in the stroke sector. 
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INTRODUCTION 

Cerebrovascular accidents (CVA), popularly known as 

stroke, are a group of brain disorders caused by 

cerebrovascular diseases (CVDs), like cerebral ischemia, 

intracerebral hemorrhage, and interventricular hemorrhage. 

Stroke is the world's second leading cause of disability and 

death. Every year, there are expected to be 15 million new 

Cerebrovascular accident cases and a probability of 5 million 

deaths[1]. Ischemic stroke and hemorrhagic stroke are the 

two important types of strokes, which accounts for 87 percent 

and 13 percent of all Cerebrovascular Accidents respectively 

[2]. This review assessment makes the following 

contributions: (i) A complete summary of the various 

ischemic neuroimaging multi-modalities, their properties, 

and requirements. We examine the most well-known ones 

among other modalities and make comments on their 

applicability, accessibility, and feasibility. (ii) An 

encompassing overview of a variety of new strategies for 

stroke classification, identification, and lesion segmentation, 

organized by methods employed, datasets used, and obstacles 

addressed. 

Ischemic Stroke 

Ischemic stroke is engendered by thromboembolism that 

blocks or seals the brain, retina, and spinal cord blood 

vessels. Figure 1 Staging the illustration of ischemic stroke. 

Large artery atherosclerosis, atrial fibrillation, and heart 

disorders are significant origins of embolism.  

Small vessel dysfunction, which is linked to hypertension 

and diabetes mellitus is another source of ischemic stroke[3], 

[4]. Patients who encountered ischemic stroke must be 

treated adequately within 3-4.5 hours after the emergence of 

symptoms[5].  

 
Figure 1. Ischemic stroke 

Ischemic Stroke Imaging 

The cerebral hemodynamics of ischemic stroke is 

represented by multimodal Computed Tomography (CT) and 

Magnetic resonance imaging (MRI), which are exploited to 

make treatment decisions and also predict expected 

outcomes[6]. Table 1 Interprets the multimodal imaging 

techniques used for acute ischemic stroke detection. 

Computed Tomography combines advanced computer 

technology with specialized x-ray equipment to generate 

multiple medical images in any inside part of the body, which 

includes fat, muscles, bones, internal organs, and blood 

vessels. 
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Figure 2. (a) Computed Angiography-Source Image 

(CTA-SI); (b) Non-Contrast CT (NCCT); (c) Ischemia on 

CTA-SI compared to NCCT 

Non-contrasted Computed Tomography (NCCT), 

Computed Tomography Venography (CTV), Computed 

Tomography Angiography (CTA), and Computed 

Tomography Perfusion (CTP) are some of the CT imaging 

modalities used to diagnose a stroke caused by blood clots or 

bleeding inside the brain. Figure 2 shows the improved 

conspicuousness of ischemia on Computed Tomography 

Angiography source images (CTA-SI) compared to 

Non-contrasted Computed Tomography (NCCT).  

Even though Computed Tomography is the most 

commonly available and fastest imaging modality, several 

comprehensive stroke centers prefer simplified MRI imaging 

over CT for two viable reasons. Firstly, Magnetic resonance 

imaging (MRI) is significantly more sensitive for detecting 

ischemic stroke and more precise for determining the core 

volume of infarction. Secondly, Magnetic Resonance 

Imaging (MRI) has less radiation dose and beam hardening 

artifacts are absent when compared to Computed 

Tomography (CT)[7]–[10].  

Magnetic resonance imaging (MRI) sequences used for 

ischemic stroke detection includes functional MRI (fMRI), 

T1-Weighted Magnetic resonance Imaging, T2-Weighted 

Magnetic Resonance Imaging, Diffusion-Weighted Magnetic 

Resonance Imaging (DWI), Fluid-Attenuated Inversion 

Recovery (FLAIR) MRI and Gradient Record Magnetic 

Resonance Imaging (GRE)[11]–[16]. Figure 3 shows the 

axial view of a normal brain's Magnetic Resonance Imaging 

(MRI) sequences. When compared to various imaging 

techniques especially Computed Tomography (CT), 

Diffusion Weighted Imaging was more efficient in detecting 

acute ischemic stroke and more sensitive for finding more 

than 33% of Middle Cerebral Artery involvement. Diffusion 

Weighted Imaging (DWI) measurements of lesion size, as 

well as Apparent Diffusion Coefficient (ADC) values, are 

possible indicators of clinical outcomes in ischemic stroke 

patients[17], [18]. 

 
Figure 3. MRI sequences of normal brain 

Table 1. Description of multimodal imaging for ischemic 

stroke detection 

Imaging 

Modalities 
Description 

NCCT NCCT generates soft tissue and bone 

images 

CTA CTA is applied to find thrombus as well 

as helps for intra-arterial thrombolysis 

CTP CTP is used to identify the parts of the 

brain that are sufficiently perfused with 

blood 

T1w MRI T1 imaging characterizes the brain tissue 

by smaller relaxation time based on the 

excitation state of protons in the water 

nucleus of the tissue 

a. Cerebrospinal fluid and inflammation 

appear dark 

b. Light white matter appearance 

c. Gray cortex appearance 

T2w MRI T2 imaging characterizes the brain tissue 

by a larger relaxation time based on the 

excitation state of protons in the water 

nucleus of the tissue 

a. Cerebrospinal fluid and inflammation 

appear bright 

b. Dark gray white matter appearance 

c. Light gray cortex appearance 

FLAIR-MRI It has a huge relaxation time than T2 

weighted imaging to characterize tissue 

a. Dark Cerebrospinal Fluid appearance 

b. Dark gray white appearance 

c. Bright inflammation appearance 

d. Light gray cortex appearance 

DWI-MRI Recognize the random motions of water 

protons. It's a highly sensitive way of 

detecting strokes. The ADC (Apparent 

Diffusion Coefficient) quantifies the 

amount of water-molecule diffusion in 

the tissue. 

Hemorrhagic stroke 

Hemorrhagic strokes take place when an artery all of a 

sudden start bleeding inside the brain. As a consequence, the 

segment of the body which is controlled by the injured 

portion of the brain is unable to function properly. 

Intracranial hemorrhage (ICH) and subarachnoid hemorrhage 

(SAH) are the two types of hemorrhagic strokes[19], [20]. 

Figure 4 shows the illustration of hemorrhagic stroke. Both 

Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) are utilized for detecting Hemorrhagic 

stroke[21].  
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Figure 4. Hemorrhagic stroke 

DATA ACQUISITION 

In general, the accuracy of ischemic stroke detection 

algorithms is intimately linked to the data sets to which they 

were applied. As a result, the creation of a publicly accessible 

benchmarking system, such as Ischemic Stroke Lesion 

Segmentation (ISLES): SISS and SPES, ENIGMA- stroke 

recovery: ATLAS lesion datasets, Interuniversity 

Consortium for Political and Social Research (ICPSR): 

stroke datasets, Neuroimaging Tools and Resources 

Collaboratory (NITRC): Autism Brain Imaging Data 

Exchange (ABIDE), is used to ease the examination of 

current trending ML and DL application [22], [23].  

Compared to other open-source datasets of ischemic stroke 

ISLES intends to provide a forum for comparing multiple 

segmentation for ischemia lesion segmentation from 

multispectral Magnetic Resonance Imaging (MRI) data fairly 

and directly. For the following two tasks below, a common 

dataset of various ischemic stroke instances will be made 

accessible, as well as an appropriate automatic evaluation 

procedure: Sub Acute Ischemic Stroke Detection (SISS) and 

Stroke Perfusion (Penumbra) Estimation (SPES[24]). Table 2 

shows the data partitioning, number of centers, and number 

of expert segment details of each SISS and SPES case in the 

2015 ISLES challenge. 

Uncompressed Neuroimaging Informatics Technology 

Initiative (NIFTI) image data formats will be applied for 

SISS and SPES images. Partitioning the datasets into training 

and testing data that contains single focal and multifocal 

cases and also small lesion and large lesion cases. The data 

layout of SISS and SPES of each case comes with its 

respective own folder which contains different types of 

Magnetic Resonance Imaging (MRI) sequences.  

Table 2. Dataset details of SISS and SPES 

Data 

Types 

Number of 

cases 

Number of 

medical centers 

Number of 

experts 

SISS 
28 Training  

36 Testing 

1 for Training 

2 for Testing 

1 Training 

2 Testing 

SPES 
30 Training  

20 Testing 

1 for Training 

and Testing 

1 Training 

and Testing 

MRI sequences for SISS data are Fluid-Attenuated 

Inversion Recovery Magnetic Resonance Imaging (FLAIR), 

T2-Weighted Magnetic Resonance Imaging(T2-MRI) Turbo 

Spin Echo (TSE) which rephases the pulse sequences, 

T1-Weighted Magnetic Resonance Imaging(T1-MRI) 

TSE/Turbo Field echo (TFE) that rephases the gradient echo 

pulse sequences for contrast enhancement, 

Diffusion-Weighted Magnetic Resonance Imaging 

(DWI)[25], [26]. 

PRE-PROCESSING TECHNIQUES 

To remove undesired artifacts and convert the data into the 

graded format, Magnetic Resonance Imaging (MRI) data 

must be pre-processed. The most predominant pre-processing 

technique in stroke images is image scaling also referred to as 

image resizing or image intensity scaling. Incrementing or 

decrementing the pixel values of rows and columns of an 

image is the working function of image intensity scaling. It 

helps to overcome the difficulties faced in the scrutiny of 

MRI [27]. 

The RGB format of the input images generated from 

medical imaging increases the computation time, memory 

size, and coding difficulty, to avoid such difficulties gray 

level conversion was introduced. It consists of two gray 

levels: 0 For black and 1 for white, it converts the RGB (Red, 

Green, Blue) image into a gray level image[28]. Skull 

stripping is one of the important Medical imaging 

pre-processing procedures that distinguish the brain tissues 

from other region tissues like the skull and non-brain 

area[29]–[31] in Magnetic Resonance Imaging (MRI) of the 

brain for stroke followed by the Bias field correction 

procedure that is exclusively used to solve the problem 

created by the presence of low-frequency field which blurs 

image components like contours, edges, and pixel intensity in 

brain Magnetic Resonance Imaging (MRI) images[32]. To 

annihilate noise from MRI images, many filtering methods 

are utilized, including the mean filter, median filter, adaptive 

median filter, weighted median filter, wiener filter, and so 

on[33]. To make ischemia region segmentation easier image 

registration was instigated to correlate two or more images in 

distinct MRI multimodalities it also differentiates the 

variations and identifies the anomalies manifested in the 

images then helps to convey esteemed data in more than a 

single MRI modality[34].  

ROLE OF ARTIFICIAL INTELLIGENCE IN STROKE 

DETECTION AND LESION SEGMENTATION 

Artificial intelligence (AI) is divergent from computer 

science and endeavors to replicate human intelligence to 

solve problems[35]. Machine learning (ML) is a type of AI 

that makes intelligent choices based on what has been learned 

from parsed input. Deep learning (DL) is a type of machine 

learning that uses an ANN (Artificial Neural Network) to 

generate intelligent decisions without using pre-set 

inputs[36]–[38].  

http://www.cimachinelearning.com/
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Figure 5. Role of AI in ischemic stroke 

An ischemic stroke emerges on CT imaging as a dark 

attenuation patch that contrasts strongly with its 

surroundings. Manually processing by a clinical specialist 

has typically been the most successful for early diagnosis, 

although it consumes more time.  As a result, machine 

learning approaches are being used for automatic detection. 

Figure 5 shows the role of Artificial Intelligence in stroke 

management 

Rajini et al. established a texture analysis as well as 

midline shift tracing algorithm-based segmentation method 

using Machine learning where Cerebrospinal fluid (CSF) 

volume changed and acted as a cerebral edema 

biomarker[39]. Guberina et al. used machine learning to 

detect early signs of infarction in the Alberta stroke 

program[40]. Lin et al. researched to evaluate the quality and 

predict possible erroneous measurements triggered by an 

anomaly. Then examined and approved the density-based 

detection practicality. [41]. We see a lot of ML approaches 

used with MRI since the feature extraction from it gives 

better results. In the instance of acute ischemic stroke, 

Teruyuki et al. discovered that a mismatch of anomalies 

between perfusion–weighted Magnetic Resonance Imaging 

(MRI) and Diffusion Weighted Imaging (DWI) images could 

aid in the identification of the penumbral region[42]. Maier et 

al. published a study comparing alternative machine 

learning-based classification algorithms for lesion 

segmentation[43]. In order to segment lesions, Mitra et al. 

researched the Bayesian–Markov random field (MRF) 

probabilistic technique and employed random forests (RFs) 

to determine the location of lesion volumes[44]. Bharathi et 

al. investigated how handmade and unsupervised techniques, 

as well as derived features, may be used to improve 

segmentation quality[45]. In order to help in the decision to 

administer reperfusion therapy whenever stroke symptoms 

initially emerged, Yoo et al. conducted research to determine 

the ideal thresholds for Neuroimaging modality parameters 

[46]. Maier et al. suggested an effective algorithm for 

voxelwise categorization based on additional tree forests, 

with a priority on reproducibility and noise resilience[47]. 

Mark et al. used five machine learning techniques to identify 

intense cerebral ischemia tissues that can recuperate after 

reperfusion, including the generalized linear model, adaptive 

boosting model, Support Vector Machine, additive model, 

and random forests[48]. To enhance probability maps, Chen 

H. et al. proposed RFs which make use of dense sparse fields 

[49]. To train Radial Basis Function (RBF) kernel SVM 

model and Artificial Neural Network (ANN), Karthik et al. 

used discrete curvelet transformation over various scales of 

http://www.cimachinelearning.com/
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features. Pereira et al. implemented a Restricted Boltzmann 

Machine (RBM) to learn lesion features [50]. Delaunay 

triangulation (DT) was used by Subudhia et al. to optimize 

delineation, and FODPSO was used to determine the 

parameters [51]. 

A new paradigm for stroke diagnosis has emerged as a 

result of the development of deep learning. A quicker and 

more effective network for feature extraction was put forth by 

Hu et al[52]. Islam et al. suggested an adaptive 

learning-based training segmentation technique that would 

find and regulate higher-order conflicts among ground–truth 

and mapped segments. The model is made up of a conceptive, 

which demonstrates the synthesized, and racially 

discriminatory model, that calculates the probability of 

samples drawn from real-world data[53]. For voxel-wise 

region detection, Bertels et al. Designed an Convolutional 

Neural Network (CNN) architectural model using data from 

an adjacent voxel[54]. Dou et al. suggested a cascade 

framework-based automated 3D CNN model for executing a 

detection operation[55]. To get higher image quality for 

precision, Wang et al. developed a DWI synthesized using 

perfusion maps[56]. To detect hyper-intense locations in 

FLAIR and T2w imaging, Li et al. proposed a 2D 

Faster-CNN-based architecture[57]. Wielding a generative 

adversarial network (GAN), Alex et al. devised a 

semi-supervised method for segmenting brain lesions[58]. To 

effectively segment the acute ischemic stroke location using 

multi-modality Imaging studies, Liu et al. suggested a DCCN 

(Res–CNN). Utilizing multimodality enhances segmentation 

performance in comparison to the single modality 

variant[59]. For an accurate reconstruction, Karthik et al. 

presented a supervised Deep Fusion Clustering Network 

(DFCN) that employed an activation unit as ReLU in the last 

two layers of the network[60]. 

CHALLENGES AND FUTURE ORIENTATIONS 

Evaluation is very challenging for all Computed Aided 

Diagnosis approaches, implementations, and strategies we 

came across while assessing the stroke area because they 

were all based on different datasets.  Although several 

techniques claimed to be entirely automated, they 

nevertheless required human input or contact for setting up 

parameters. A robust intelligent system would be necessary 

for a fully automated procedure that can adjust and alter in 

accordance with the current state of the patient and the 

severity of their symptoms. It would open up a number of 

possibilities in terms of the potential for artificial 

intelligence. We discovered less research on the classification 

of stroke subclasses and paucity on the effectual progression 

of stroke lesion volume extraction across time. For better 

study and a clearer understanding of their impact, a diverse 

collection including images from different datasets should be 

developed 

There are various possible directions for future research: 

(i) Artificial Intelligence-based automated system that greatly 

enhances ischemic stroke early detection (ii) Creating a 

massive heterogeneous public database (iii) Developing 

Graphical User Interface (GUI) for acute ischemic stroke 

(AIS) detection and segmentation by utilizing effective ML 

and DL Approaches (iii)Designing a prototype to monitor 

stroke encountered patients using predictive AI-models on 

this basis cloud. 

CONCLUSION 

In this systematic review, a distinct segmentation approach 

emphasizing infarct cores and penumbra estimation of 

ischemic stroke was presented. From brain images, the 

offered algorithms could identify the existence of a stroke 

lesion. It's difficult for academics to create a more reliable 

algorithm because of the computation time and accuracy 

requirements. The segmentation of the stroke lesions alone 

achieves the accuracy of approximately 81% to 99.1% 

contemplated in above section 4. Additionally, the gap 

appears when all state-of-the-art approaches are 

insufficiently applied in clinical settings. It may be possible 

for the medical and engineering fields to collaborate to 

develop an accomplishing end-to-end automatic generic 

framework for recognizing stroke lesions. 
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