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Abstract 

The devastating earthquake that caused significant destruction in 11 provinces on February 6, 2023, has accelerated the growth rate of the 

cement sector. This rapid growth, coupled with increasing stock market activity, marks a golden age for the sector while emphasizing the 

critical need for accurate future production forecasting. Leveraging the predictive capabilities of machine learning algorithms, experiments 

were conducted using five years of production data from a cement factory in the Southeastern Anatolia region. The Support Vector 

Regression (SVR) model, an application of the Support Vector Machine (SVM) algorithm, was tested with RBF, linear, sigmoid, and 

polynomial kernels. Among these, the SVR model with the RBF kernel yielded the best performance across four evaluation metrics: Mean 

Squared Error (MSE): 0.002926, Root Mean Squared Error (RMSE): 0.054094, Mean Absolute Error (MAE): 0.048611, and Mean Absolute 

Percentage Error (MAPE): 0.052697. This paper highlights the effectiveness of SVR-RBF in providing reliable production forecasts for the 

cement industry and supporting strategic planning to address dynamic market demands. 
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INTRODUCTION 

Cement is an indispensable material in modern 

construction, obtained through the calcination and grinding 

of specific raw materials. It is the backbone for a wide range 

of structures, from residential buildings to large-scale 

infrastructure projects, and plays a critical role in urban 

development [1]. The production process involves heating 

raw materials like limestone and clay to high temperatures, 

which is both resource-intensive and energy-demanding. 

Consequently, accurate forecasting in production planning 

has become vital for optimizing operations, reducing costs, 

and meeting fluctuating market demands. As in all production 

processes, forecasts for use in future production planning are 

very important. In production planning processes, prediction 

studies using machine learning algorithms have become quite 

popular in recent years. Machine learning algorithms are 

increasingly being used in production planning processes to 

make predictions and optimize various aspects of production. 

These algorithms identify patterns, forecast future production 

needs, demand trends, inventory levels, and other key factors. 

By leveraging machine learning in production planning, 

companies can improve efficiency, reduce costs, and better 

meet customer demands [2]. One of these algorithms, SVR, 

which is specialized for regression of SVM, can be a valuable 

tool in optimizing production processes to predict cement 

production using machine learning algorithms. Predicting 

cement production using machine learning algorithms such as 

SVR can be a valuable tool in optimizing production 

processes. SVM works with labeled data, so it is suitable 

method to analyze data and find hidden patterns among the 

data [3]. SVM can perform well with small datasets compared 

to some other machine learning algorithms. This is because 

SVM focuses on finding the best separation or decision 

boundary between different classes in the data, and it does not 

rely on the entire dataset to do so. In contrast, other 

algorithms like deep learning models may require great 

number of data for training to learn and generalize patterns 

effectively. SVM's ability to handle small datasets is 

advantageous in situations where limited data is available for 

training [4]. 

The cement sector is generally associated with many 

economic activities, but as a result of the economic 

development and rapid population growth experienced 

between 2000 and 2020, production and consumption have 

doubled. In 2020, it was among the top 10 producers in the 

world, while it ranked 2nd in exports with a foreign exchange 

input of 1.2 billion dollars [5]. By utilizing an SVR-based 

prediction system in cement production planning processes, 

companies can gain insights into anticipated output levels, 

optimize resource allocation, manage inventory effectively, 

and ultimately enhance operational efficiency. Many data sets 

can be used for cement production estimation, such as 

laboratory experiments, industrial production data or 

simulation data. The data set used in this paper includes 

production data values of a cement factory in the 

Southeastern Anatolia region. To apply SVR to predict 

cement production, historical data related to factors 

influencing production such as Electricity consumption 

amount, Coal consumed waste and as raw material; 

Limestone, Marn, Ash, Iron Ore, Fluorite, Bauxite 

parameters can be used. This data can be used to train the 

SVM model to recognize patterns and relationships that affect 

cement production. Once the SVR model is trained with 

relevant features and historical output data, it can then be used 

to make predictions for future production levels based on 

input variables. The model's ability to identify complex 

patterns in the data makes it useful for forecasting variations 
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in cement production under different scenarios. 

Production Planning and Control (PPC) plays a critical role 

in optimizing manufacturing systems, especially in complex 

interdepartmental structures. The advent of Industry 4.0 has 

introduced vast data availability, advanced processing power, 

and extensive storage capacity, making Machine Learning 

(ML) an attractive solution for addressing production 

challenges. A systematic review of 93 recent studies 

highlights that ML-supported PPC (ML-PPC) methodologies 

can significantly enhance decision-making in production 

planning. These studies suggest that integrating machine 

learning into production planning not only optimizes 

operations but also offers valuable insights for addressing 

issues such as inventory management, demand fluctuations, 

and resource allocation. However, the research also reveals 

gaps, including limited integration of customer, 

environmental, and human aspects into ML-PPC models, as 

well as challenges in adapting ML models to dynamic 

production systems. These insights underscore the 

importance of PPC in cement production forecasting, where 

precise planning, driven by accurate machine learning models 

like SVR, can lead to improved efficiency and sustainability 

[6]. 

The remaining sections of the paper are organized as 

follows: The "Materials and Methods" section covers detailed 

information on cement production, different types and 

properties of cement, an overview of the SVM algorithm, and 

the error metrics employed to evaluate model performance. 

The "Literature Review" section provides an overview of 

related research on machine learning applications in cement 

production and forecasting. The "Data Preprocessing" section 

discusses the dataset in detail, including any preprocessing 

steps undertaken to prepare the data for modeling. The "SVR 

Model and Experimental Results" section describes the SVR 

model design and presents the findings from experiments 

conducted with various SVM kernel functions. Finally, the 

"Conclusion" section includes a comprehensive evaluation of 

the results, summarizing the paper's contributions and 

suggesting directions for future research. 

MATERIALS AND METHODS  

Cement Production 

   The raw materials used in cement production are 

limestone, marl, ash, iron ore, fluorite, bauxite, and other 

additives. The production process begins with the 

procurement of these raw materials. These raw materials 

arrive in larger pieces than necessary and are first crushed into 

large fragments. This allows the materials to be broken down 

into smaller pieces for easier processing in subsequent steps. 

The crushed raw materials are then ground into a powder 

during the grinding step. This process homogenizes the 

cement and increases efficiency [7]. The homogenized raw 

materials are mixed in specific proportions. This mixture is 

formulated to reflect the main characteristics of the cement. 

The degree of homogenization is very important as it directly 

affects the quality of the cement. The homogeneous mixture 

is heated in a preheating unit. The heating process helps 

conserve energy. The mixture heated in the preheater is then 

processed in the cement kiln. Cement kilns rotate 

continuously, and their internal temperatures reach around 

1600°C. The limestone and clay used in the raw materials 

combine to form clinker, the main component of cement. The 

resulting clinker is subsequently cooled from the high 

temperature. This process preserves the physical properties of 

the clinker. Air and some cooling systems are used for the 

cooling process. The cooled clinker is then ground into a 

powder. 

 
        Figure 1. Cement Production Steps 

The grinding of clinker determines the final form of the 

cement. Other raw materials are added during the grinding 

process as we can see Figure 1. The produced cement 

undergoes continuous laboratory testing. The purpose of 

these tests is to assess the quality of the cement. Various 

quality control tests are conducted at every stage of cement 

production. The aim of these tests is to ensure compliance 

with standards. Cement is stored in silos, which protect the 

produced cement from moisture. Cement can be packaged in 

two forms: bagged and bulk. Bulk cement is used for large 

projects, while bagged cement is used for smaller projects. 

The packaged cement is distributed to customers based on 

demand. All these processes are illustrated in the cement 

production scheme above. 

Types and Properties of Cement 

CEM I Portland Cement (Clinker Ratio 95-100%): The 

most preferred type of cement, suitable for all applications. 

CEM II Portland Composite Cement (Clinker Ratio 65-

94%): Suitable for marine structures, dams, piers, and similar 

constructions. 

CEM III Blast Furnace Slag Cement (Clinker Ratio 5-

64%): More environmentally friendly compared to CEM I 

and CEM II. Used in areas exposed to abrasive effects, such 

as breakwaters. 

CEM IV Pozzolanic Cement (Clinker Ratio 45-89%): 

Used in projects requiring high durability. Applicable in 

plaster and wall mortar, road surfacing, and construction 

chemicals. 

CEM V Composite Cement (Clinker Ratio 20-64%): 
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Frequently used in treatment systems and water channel 

projects [8]. 

Support Vector Machine (SVM) 

  SVM is one of the supervised learning algorithms used in 

data mining and machine learning. SVM is particularly 

effective in classification problems, but can also be applied in 

regression analysis. Its main purpose is to find the best 

boundary (hyperplane) that separates the data into two or 

more classes [16] as we can see in Figure 2. Initially used to 

solve classification problems, SVM has been used by most 

authors in linear and nonlinear classifications by developing 

SVM regression SVR methods [12]. 

 
Figure 2. SVM 

Training dataset  {(𝑋1,  𝑌1). . . . (𝑋𝑡,  𝑌𝑡)} ⊂  𝑋 ×  𝑅, 
X is input, Y is output. Our goal is to find a function f(x) 

for all training data input pairs with the least deviation ɛ for 

input Xi to Yi. As long as the errors are smaller than ɛ, we 

ignore them, and when they are larger, we review and 

recalculate the Wi(weights) and bi(bias). 

 𝑓(𝑥) =  (𝑤,  𝑥) +  𝑏 with   𝑤 ∈  𝑋 ,  𝑏 ∈  𝑅               (1) 

minimize
1

2
||𝑤||2 

subject to  
𝑦𝑖 − (𝑤, 𝑥𝑖) − 𝑏 ≤ 𝜀
(𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀

                                        (2) 

In Eq. (1;), the function f can be applied to optimisation 

problems that approximate all pairs (Xi, Yi) with precision ɛ, 

convex optimisation problems. When the loose variables 

𝜍𝑖 , 𝜁∗
𝑖
 apply equation Eq. (1), it is desired to allow some 

errors, the optimisation problem equation becomes like Eq. 

(2) When SVM (equation 3.1) to nonlinear SVR, we get a 

hyper-parameter C that we can optimize (equation 3.2). We 

allow for an extra 𝜍𝑖 , 𝜁∗
𝑖
deviation from the margin of our 

data. 

minimize    
1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜍𝑖 + 𝜁∗

𝑖
)

𝑛

𝑖=1

 

subject to    

𝑦𝑖 − (𝑤, 𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜍𝑖

(𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜁∗
𝑖

𝜍𝑖 , 𝜁∗
𝑖

≥ 0
                         (3) 

|𝜁|𝜀  : =
0                𝑖𝑓  |𝜁| ≤ 𝜀

|𝜁| − 𝜀       otherwise
                                 (4) 

SVM algorithms use many mathematical functions defined 

as different types of kernel functions. For example Linear, 

Nonlinear, Polynomial, Gaussian, Radial Basis Function 

(RBF), the Gaussian Radial Basis Function, Hyperbolic 

Tangent and Sigmoid. In this paper we used the SVR of the 

sklearn.svm library with four different kernels. 

Support Vector Regression (SVR) 

  The type of SVM method used for regression is called 

SVR. SVR is a powerful regression technique, especially 

when there are nonlinear relationships. Its success depends on 

the correct parameter settings and the selection of the 

appropriate kernel function. 

Error Metrics 

  Error metrics are used to evaluate the success of the 

model in the work of the machine learning algorithm. Error 

metrics are used to measure the accuracy of the predictions as 

a result. 

Mean Square Error (MSE): Measures how far the estimates 

are from the true values. It is the average of the squares of the 

errors. 

MSE =
1

𝑛
∑ (𝑌𝑅𝑒𝑎𝑙 − 𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1
 

Root Mean Square Error (RMSE): The square root of 

MSE, expressed in original error units. RMSE = √𝑀𝑆𝐸 . 

Mean Absolute Error (MAE): Measures how far the estimates 

are from the true values, the average of the absolute values of 

the errors. 

MAE=
1

𝑛
 ∑ |𝑌𝑅𝑒𝑎𝑙 − 𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|𝑛

𝑖=1  

Mean Absolute Percentage Error (MAPE): is a commonly 

used metric in regression analysis to evaluate the accuracy of 

a predictive model. It measures the average magnitude of 

errors as a percentage, making it easy to interpret in terms of 

how large the errors are relative to the actual values. 

MAPE=
1

𝑛
 ∑

|𝑌𝑅𝑒𝑎𝑙−𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑌𝑅𝑒𝑎𝑙

𝑛

𝑖=1
∗ 100 

LITERATURE REVIEW 

  In this section, we reviewed the articles that use machine 

learning algorithms in production forecasting in terms of the 

methods and their successes they have achieved. Indonesia is 

one of the largest palm oil producing regions, so [9] suggested 

SVR and ANN models to determine production development 

for the coming years. The forecasts made by SVR with RBF 

kernel achieved better results than ANN. Thus, they achieved 

3%-6% better results in 3-year forecasting. They estimated 

cement production in Turkey between 2000 and 2016 for this 

they used Double Exponential Smoothing (DES), Simple 

Exponential Smoothing (SES), and 3-Period (2017-2018-

2019) Double Moving Average (DMA) methods. The results 

obtained are parallel to each other in all three methods, and 

the 3-Period Double Moving Average showed a better 

performance, with MSE=8.39, MAD=2.39 and MAPE=0.04 

values [10].  

In the paper where they made energy consumption 

estimation in complex production processes of cement 

production, they compared the time-varying delay deep belief 
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network (TVD-DBN), least squares SVM and deep belief 

network methods. In the study where they sought solutions to 

the problems of nonlinearity, time delay and uncertainty in 

energy consumption, they increased the generalization ability 

of the models by eliminating the varying delay [11]. 

They used SVR to predict the mechanical properties of 

cement mortar. They used the SVR parameters 'C' expressing 

the complexity of the model, 'γ' affecting the complexity of 

the model, and 'ε' expressing the distance from the true value, 

and they obtained the best results with RBF kernel as 

R2=0.9772, RMSE=2.564, MAPE=3.909 from the 

experiments [12]. 

Energy consumption plays a crucial role as an indicator of 

efficiency in cement production, particularly within raw 

material grinding systems. However, the complex nature of 

these systems—characterized by strong interdependencies, 

time lags, inherent nonlinearity, and uncertainty—poses 

significant challenges for accurate modeling. To tackle these 

issues, a novel LSTM model incorporating spatial attention is 

introduced. This approach leverages LSTM networks to 

effectively capture long-term temporal relationships, while 

the spatial attention mechanism enhances the model’s 

sensitivity to critical information and strengthens spatial 

awareness. The proposed SA-LSTM model's performance 

was benchmarked against methods such as LSTM, Seq2Seq, 

ARIMA, SVM, and XGBoost, demonstrating its clear 

superiority over the alternatives [13].  

Cement production is an energy-intensive process, 

significantly impacting the energy footprint of concrete 

systems. A predictive process model was developed to 

optimize clinker quality while reducing energy consumption, 

integrating kiln feed chemistry and critical process variables. 

Using two years of data from an operational cement plant, a 

new analytical model combining quality and operational data 

was created, independent of fuel type. A Feedforward 

Network trained on this data showed superior accuracy 

compared to the standard Bogue model, with lower mean 

square error (MSE). This approach enhances energy 

efficiency while maintaining or improving clinker quality 

[14]. 

A study focused on the clinker production process in 

cement manufacturing developed an optimization framework 

based on neural networks and genetic algorithms, utilizing 

one year of operational data. The raw material-to-coal feed 

mass ratio in the precalciner and the coal feed mass ratio in 

the rotary kiln were selected as the primary independent 

variables and control parameters. Specific standard coal 

consumption served as the key performance indicator and 

optimization objective. This approach demonstrated the 

capability of advanced algorithms to improve energy 

efficiency and reduce resource consumption in industrial 

cement production settings [15]. 

DATA PREPROCESSING  

The dataset used in this paper includes daily production 

data from a five-year period, spanning from January 1, 2018, 

to December 31, 2023. Given that data preprocessing is a 

crucial step in machine learning and data mining, this stage 

aimed to prepare the data by correcting missing values and 

handling inconsistencies to ensure data quality. Due to 

various factors, including operational issues or maintenance, 

certain days lacked production data in the dataset. To address 

this, we used the mean imputation method, where missing 

production values were filled with the average values 

calculated from available production data. This approach was 

implemented using Scikit-Learn’s SimpleImputer function. 

Non-production days (where no data was recorded due to 

planned shutdowns or other interruptions) were also carefully 

considered to ensure these values were represented accurately 

without skewing the data. The dataset comprises ten features: 

Electricity_Consumption, Coal_Consumption, 

Waste_Consumption, Limestone, Marn, Ash, Iron_Ore, 

Fluorite, Bauxite, and Clinker_Production. As all features are 

numerical, they were normalized using the MinMaxScaler() 

function in Scikit-Learn to scale the values between 0 and 1, 

facilitating consistent input for the SVR model. The nine 

features excluding Clinker_Production were used as 

independent variables to predict Clinker_Production, which 

serves as the dependent variable in this paper. By conducting 

thorough preprocessing, including missing data imputation 

and normalization, the dataset was standardized to improve 

model accuracy and ensure that the SVR model could reliably 

detect patterns in the clinker production process. 

SVR MODEL AND EXPERIMENTAL RESULTS  

In the experiments where we used the SVR function of 

SVM, three parameters were used. These parameters are 

kernel, C, and gamma, and fixed values were used for C=1e3 

and gamma=0.00001, while 4 different values were used for 

Kernel (RBF, Linear, Sigmoid, Polynomial).  As can be seen 

from Figure 3, where we show the relationship between 

sns.heatmap and each feature, each feature is related to 

cement production, but no correlation is observed between 

each other. 

 
Figure 3. Attributes correlation matrix. 

The results obtained with RBF, Linear, Sigmoid, 

Polynomial kernels for four different MAE, MAPE, MSE, 

AND RMSE are as in Table 1. In this paper, where we tested 
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the applicability of SVMs to the cement sector, a very good 

result of MAPE = 0.052697 was obtained by using 80% of 

the data in the data set consisting of 5 years of data as train 

and 20% as test and making a next day prediction at each step. 

Table 1. SVR Results with different kernels. 

Kernal MSE RMSE MAE MAPE 

RBF 0.002926 0.054094 0.048611 0.052697 

Linear 0.012483 0.111729 0.078095 0.085754 

Sigmoid 0.003544 0.059530 0.054906 0.059412 

Polynomial 0.009608 0.098022 0.083199 0.089994 

As can be seen from Figure 4, the cement production 

prediction including the last 200 days was visualized and the 

graph was visualized with 0.1 precision, preventing the 

overlapping of the graphs.RBF kernel is one of the SVM 

kernels that is easy to tune and preferred in many prediction 

problems [17]. 

 
Figure 4. Cement Production forecast with different kernels. 

CONCLUSION 

Cement production is a cornerstone of the heavy industry 

sector, characterized by massive kilns operating at extremely 

high temperatures. The interruption of these kilns 

significantly disrupts production schedules and increases 

operational costs. Accurate forecasting and meticulous 

production planning are therefore crucial to maintain 

efficiency and sustainability in cement manufacturing 

processes. The MAPE value of 0.052697 achieved through 

our experiments indicates a high level of accuracy, offering a 

reliable foundation for future production planning and 

forecasting endeavors. 

Beyond production forecasting, accurately predicting 

electricity consumption is integral to optimizing energy usage 

and reducing operational costs. Energy expenses constitute a 

substantial portion of overall costs in the cement industry, 

driven by high electricity and fuel demands during clinker 

production and kiln operations. By forecasting electricity 

consumption accurately, factories can better align their 

energy procurement and usage strategies, resulting in 

significant cost savings and minimized environmental 

impact. Despite its contributions, this study has certain 

limitations and areas for future improvement that warrant 

attention. While the study focuses solely on SVR, potentially 

limiting the exploration of other effective algorithms, the 

results obtained are promising. Additionally, the dataset is 

restricted to a single factory and specific variables, excluding 

external factors such as market trends or environmental 

impacts that could influence cement production. 

Furthermore, the model requires retraining of the weights 

obtained from the dataset to adapt to new conditions caused 

by changing circumstances. Future work will focus on further 

enhancing forecasting accuracy by leveraging updated 

datasets and optimizing the parameters of various deep 

learning algorithms. Additionally, integrating energy 

efficiency considerations into production planning models 

can unlock new opportunities for cost reduction and 

sustainability, ensuring that energy-intensive processes like 

cement production meet both economic and environmental 

objectives. 
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